SUBJECT: THE HILL ABDUCTION CASE FILE: UFO2711 PART 10 ---------------------------------------------------------------------- REPLY: By Marjorie Fish Basically, Robert Sheaffer's contention is that at least three patterns can be found that are similar to Betty Hill's map, and therefore, more such interpretations are likely. If one stipulates that any stars from any vantage point can be used, then I agree that many patterns can be found similar to the map. However, if one uses restrictions on the type of stars, according to their probability of having planets and also on the logic of the apparent travel paths, then it is much more difficult. The three maps were: (1) Betty Hill's interpretation of the constellation Pegasus as being similar to her map, (2) Charles Atterberg's work, and (3) my work. When I started the search, I made a number of restrictions including: 1) The sun had to be part of the pattern with a line connected to it, since the leader of the aliens indicated this to Betty. 2) Since they came to our solar system, they should also be interested in solar type stars (single main sequence G, probably also late single main sequence F and early single main sequence K). These stars should not be bypassed if they are in the same general volume of space. 3) Since there are a number of the above stars relatively near the sun and the pattern shows only 12 stars, the pattern would have to be relatively close to us (or else they would be bypassing sunlike stars, which is illogical). 4) The travel pattern itself should be logical. That is, they would not zip out 300 light-years, back to 10 light-years, then out 1,000, etc. The moves should make a logical progression. 5) Large young main sequence stars (O, B, A, early F) which are unlikely to have planets and/or life would not be likely to be visited. 6) Stars off the main sequence with the possible exception of those just starting off the main sequence would probably be avoided as they are unsuitable for life and, due to their variability, could be dangerous. 7) If they go to one star of a given type, it shows interest in that type star -- so they should go to other stars of that type if they are in the same volume of space. An exception to this might be the closest stars to the base star, which they might investigate out of curiosity in the early stages of stellar travel. For example, they would not be likely to bypass five red dwarfs to stop at the sixth, if all six were approximately equal in size, spectra, singleness or multiplicity, etc. Or, if they go to one close G double, they would probably go to other close G doubles. 8) The base star or stars is one or both of the large circles with the lines radiating from it. 9) One or both of the base stars should be suitable for life -- F8 to K5 using the lowest limits given by exobiologists, or more likely, K1 given by Dole. 10) Because the base stars are represented as such large circles, they are either intrinsically bigger or brighter than the rest or they are closer to the map's surface (the viewer) than the rest -- probably the latter. This was later confirmed by Betty Hill. Mrs. Hill's interpretation of Pegasus disregards all of these criteria. Atterberg's work is well done. His positioning of the stars is accurate. He complies with criteria 1, 2, 3, 5, 6 and 8; fairly well with 4; less well with 9, and breaks down on 7 and 10. I will discuss the last three of Atterberg's differences with my basic criteria in the following paragraphs: Relative to point 9, his base stars are Epsilon Indi and Epsilon Eridani, both of which are near the lower limit for life bearing planets -- according to most exobiologists -- and not nearly as suitable as Zeta 1 and 2 Reticuli. Concerning point 7, I had ruled out the red dwarfs fairly early because there were so many of them and there were only 12 lined points on the Hill map. If one used red dwarfs in logical consecutive order, all the lines were used up before the sun was reached. Atterberg used red dwarfs for some of his points to make the map resemble Betty Hill's but he bypassed equally good similar red dwarfs to reach them. If they were interested in red dwarfs, there should have been lines going to Gliese 65 (Luyten 76208) which lies near Tau Ceti and about the same distance from Epsilon Eridani as Tau Ceti, and Gliese 866 (Luyten 789- 6) which is closer to Tau Ceti than the sun. Gliese 1 (CD-37 15492) and Gliese 887 (CD-36 15693) are relatively close to Epsilon Indi. These should have been explored first before red dwarfs farther away. Red dwarfs Gliese 406 (Wolf 359) and Gliese 411 (BD + 36 2147) were by passed to reach Groombridge 1618 and Ross 128 from the sun. Barnard's star would be the most logical first stop out from the sun, if one were to stop at red dwarfs, as it is the closest single M and is known to have planets. Since Atterberg's pattern stars include a number of relatively close doubles (61 Cygni, Struve 2398, Groombridge 34 and Kruger 60), there should also be a line to Alpha Centauri --but there is not. Relating to point 10, Atterberg's base stars are not the largest or brightest of his pattern stars. The sun, Tau Ceti, and Sigma Draconis are brighter. Nor are they closer to the viewer. The sun and 61 Cygni are much closer to the viewer than Epsilon Eridani. The whole orientation feels wrong because the base stars are away from the viewer and movement is along the lines toward the viewer. (Betty Hill told me that she tried to show the size and depth of the stars by the relative size of the circles she drew. This and the fact that the map was alleged to be 3-D did not come out in Interrupted Journey, so Atterberg would not have known that.) Sheaffer notes that seven of Atterberg's pattern stars appear on Dole's list as stars that could have habitable planets. These stars are Groombridge 1618 (Gliese 380, BD + 50 1725), Groombridge 34 (Gliese 15,BD +43 44), 61 Cygni, Sigma Draconis, Tau Ceti, Epsilon Eridani and Epsilon Indi. Of these seven, only Epsilon Eridani, Tau Ceti and Sigma Draconis are above Doles' absolute magnitude minimum. The others are listed in a table in his book Habitable Planets for Man, but with the designation: "Probability of habitable planet very small; less than 0.001." Epsilon Eridani was discussed earlier. Sigma Draconis appears good but is listed as a probable variable in Dorrit Hoffleit's Catalogue of Bright Stars. Variability great enough to be noticed from Earth at Sigma Draconis' distance would cause problems for life on its planets. This leaves Tau Ceti which is one of my pattern stars also. Another point Sheaffer made was that orientation of my map was arbitrary compared to Atterberg's map's orientation with Gould's belt. One of my first questions to Betty Hill was, "Did any bright band or concentration of stars show?" This would establish the galactic plane and the map's orientation, as well as indicate it was not just a local map. But there was none indicating that if the map was valid it was probably just a local one. The plane of the face of my model map is not random, as Sheaffer indicated. It has intrinsic value for the viewer since many of the pattern stars form a plane at this viewing angle. The value to the viewer is that these stars have their widest viewing separation at that angle, and their relative distances are much more easily comprehended. My final interpretation of the map was the only one I could find where all the restrictions outlined above were met. The fact that only stars most suitable for Earthlike planets remained and filled the pattern seems significant. Marjorie Fish is a research assistant at Oak Ridge National Laboratory in Tennessee. ********************************************** * THE U.F.O. BBS - http://www.ufobbs.com/ufo * **********************************************