1$0$3.141592654$13$2$.5$2$.5$1000$2$2$1.4$4$2$2.5$.1$3.5$.25$4$2$2$.75$4$1.5$1.4$83$100$10$4$4$1.5$2$.5$100$4$1000000$4$2$1000$6.283185307$.5$12.56637061$2$2$2$2$2$2$3.14159$100$100$.09$.14$.22$.312$12$.081$13$.072$14$.064$15$.057$16$.051$17$.045$18$.040$19$.036$20$.32$21$.0285$22$.0253$23$.0226$24$.0201$25$.0179$26$.0159$27$.0142$28$.0126$29$.0113$30$.01$31$.0089$32$.008$33$.0071$34$.0063$35$.0056$36$.005$37$.0045$38$.004$39$.0035$40$.0031$12$40$40$4$4$4$18$2$40$4$4$4$18$2$10$10$100$100$492$.05$2$492$30$.95$150$.97$149.9$.98$118$148$.1264$2$.1593$3$.2009$4$.2533$5$.3195$6$.4028$7$.5080$8$.6405$9$.8077$10$1.018$11$1.284$12$1.619$13$2.042$14$2.575$15$3.247$16$4.094$17$5.163$18$6.51$19$8.21$20$10.35$21$13.05$22$16.46$23$20.76$24$26.17$25$33$26$41.62$27$52.48$28$66.17$29$83.44$30$105.2$31$132.7$32$167.3$33$211$34$266$35$335$36$423$37$533$38$672.6$39$848.1$40$1069$3$1.6$4$4.4$1.8$1.4$5.68$12.8$5.1$4$.94$11$6.7$3.4$1000$1000$.1264$.1593$2$.2009$3$.2533$4$.3195$5$.4028$6$.5080$7$.6405$8$.8077$9$1.018$10$1.284$11$1.619$12$2.042$13$2.575$14$3.247$15$4.094$16$5.163$17$6.51$18$8.21$19$10.35$20$13.05$21$16.46$22$20.76$23$26.17$24$33$25$41.62$26$52.48$27$66.17$28$83.44$29$105.2$30$132.7$31$167.3$32$211$33$266$34$335$35$423$36$533$37$672.6$38$848.1$39$1069$40$1000$1000$3$5.5$5$24$8.7$3$8$11.7$9$18$*8���) *** ELECTRICAL ENGENEERING & DESIGN ***�$4 J. Schrabal, April 1979�$44File cleaned up of typos and put somewhat of a structure�$4in it: 8/25/82 by S. Kluger�$44€�.�To select one of the programs just type it's number�$4and hit 'RETURN' key. Enter all alphabetic answers in UPPER CASE!�$44Select from the following routines (0 to quit) :�$4 1. Ohm's law (DC)�$4 2. Zener stabilized DC supply�$4 3. DC power supply design�$4 4. Low pass 2-pole Butterworth filter�$4 5. Series resonant frequency circuit�$4 6. Passive band-pass filter�$4 7. Small coil design & inductance calculations�$4 8. Long wire antenna�$4 9. Dipole or half wave antenna�$4 10. Time constant calculation�$4 11. Resistance of wire�$4 12. Crystal (rec./tr.) frequency calculations�$44What routine do you wish to select�$4;€"'À.�À.�7‰6ÁÀ.�7•68Please answer with number fom 0 to 12�$46AÀ[€\96ì6‰6 L6Ì6o6Ã6ú6'q6),6+ë6-_65f4 *** OHM's LAW (DC) ***�$44 ENTER values for 2 (two) known�$4 ENTER 0 (zero) for unknown values to be calculated�$44Potential in volts �$4;€"'Current flow in amperes �$4;€"'À.�À.�7¿6vResistance in ohms�$4;€"'À.�À.�À.�7õ6À.�À.�À.�76ŒPower in watts �$4;€"'À.�À.�À.�7B6ŸÀ.�À.�À.�7\6¶À.�À.�À.�7v6É€ÀÀ6”€ÀÀ6”€ÀÀ€ÀÀ6Ý€ÀÀ€À.�À6Ý€ÀÀ€ÀÀ6Ý€ÀÀ.�€ÀÀ4Potential = �$À# volts�$4Current flow = �$À# amperes�$4Resistance = �$À# ohms�$4Power = �$À# watts�$44MORE CALCULATIONS? (YES/NO)�$4;€1'ÀYES�7†66‰6A4 *** ZENER STABILIZED CIRCUIT DESIGN ***�$44Voltage rating of zener diode�$4;€"'Wattage rating of zener diode�$4;€"'Maximum DC voltage of power supply�$4;€ "'€À À.�À€ÀÀ.�For an open circuit, or for load up to �$À.�# miliamperes�$4Use �$À#ohms �$À# watt resistor�$44Will the load (device) you use have larger than �$À#watts consumption?�$4(YES/NO)�$4;€ 1'À NO�7%6 What is the maximum wattage of the device you use:�$4;€"'€À À.� À.� À�Use �$À#ohms �$ÀÀ�# watts resistor�$4WARNING: Zener diode will probably burn out if the load�$4 should be removed and circuit left open.�$44More calculations? (YES/NO)�$4;€1'ÀYES�7 I6»6 L6A *** POWER SUPPLY DESIGN ***�$44What is LINE AC voltage supplied by utility�$4;€"'What is transformer's primary rating (or tap)�$4;€ "'What is RMS voltage of secondary winding�$4;€"'€ ÀÀÀ €À .�€ÀÀ.��What is the needed (desired) DC voltage�$4;€"'À.� À7 t6ÄÀÀ7 6What is the voltage rating of REGULATORS�$4 used with the power supply�$4;€"'À.��À.��À7 ÷6jÀ.��À.��À7 6ÏPresuming that you use full wave, will the rectifying bridge�$4consist of four (4) or two (2) diodes (as in centertap sec)�$4;€"'À.�À.� 7¥6×4Answer whether 2 or 4 diodes will be used�$446 À.�7æ€.�À.�7õ€.�€À À.�€ÀÀWhat is the load to be used in amperes? (if unknown type 0)�$4;€"'À.�7Z6?€À.�À.�€ÀÀ.��4Line = �$À# volts AC (max).Transformer primary (tap) = �$À # volts AC�$4Secondary = �$À # volts RMS. Peak sec.voltage = �$À#4For desired �$À# volts DC use rectifying bridge of �$À#4diodes rated at �$À# volts (minimum) and �$.�À#amps (min.)�$4Filter capacitor should be rated �$À# microfarads (minimum)�$4and �$À#volts DC (min).Permissible ripple = �$À# volts�$44NOTE:Use ohm-law to calculate bleeder-resistor.�$4More calculation for another secondary (YES/NO)�$4;€1'ÀYES�7u6 âMore calculation for another transformer (or tap)�$4;€1'ÀYES�7Á6 «6Ä6AYour secondary winding has overly high rating for this�$4power requirement�$446 âYour secondary winding has low voltage rating for this�$4power requirement�$446 âPower supply DC voltage must be more than 2.5 volts higher�$4 than voltage of REGULATOR.�$446 4Your supply voltage is overly high and will cause the regulator�$4to overheat. Reduce your voltage to �$À.��# volts�$4One way to do this is to insert series of diodes with rating�$4which will be printed below, each such diode reducing the�$4supply DC voltage by .7 volts (two diodes reduce 1.4 v)�$4Then add this voltage to regulators when answering Q.�$446 4How many TAB-type regulators will be used�$4;€"' K-type regulators�$4;€"'Any other load (in ampers)�$4;€"'€ÀÀ.��À�6Z *** LOW PASS FILTER ***�$4This program is based on OPERATIONAL AMPLIFIERS DESIGNS�$4& APPLICATIONS by Graeme & Tobey, McGraw, 1971.�$44Cut off frequency (in Hertz)�$4;€"'Desired pass-band gain (H)�$4;€"'Peaking factor: 0(zero) for standard 2-pole Butterworth�$4(alpha) value for non-standard filter�$4;€"'À.�7.€.�.� ÀÀ.�!7=6dValue of C2 in mF (microFarads)�$4Note: 0.02 mF = 0.000 000 02 F �$4;€"'€À.�"À�ÀÀ.�#4 .---------. C1 = �$.�$.��À�ÀÀ.�%#4 X : C2 = �$À#4 X R2 = C2 R1 = �$ÀÀ#4 X : R2 = �$À#4 R1 : R3 : - o R3 = �$ÀÀ.���#4--XXXXXX--:--XXXXXX-:---o o�$4 : o o�$4 E-in : o o---------------�$4 = C1 + o o�$4 : ---o o�$4 : : o E-out�$4 : :�$4----------:----------:--------------------------�$4Another gain/alpha ratio? (YES/NO)�$4;€1'ÀYES�7!6…Another filter configuration (YES/NO)�$4;€1'ÀYES�7a6_6d6ABecause operational amplifiers are non-ideal, pass-�$4band gain should be chosen to be less than 10 when peaking�$4factor Alpha = 0-1�$4Gain of 100 with peaking factor=1 is acceptable for �$4for peaking gain 80 dB in 2-pole Batterworth config-�$4uration.�$446…4 *** SERIES RESONANT FREQUENCY CIRCUITS ***�$44Inductance in MH (Milli-Henrys)�$4;€"'Capacitance in NF (Nano-Farads)�$4;€"'4Series L/C resonant frequency is �$.�&.�'ÀÀ.�(# KHz (Kilo Hertz)�$4Note: this frequency is not affected by resistance in the circuit�$44More calculations? (YES/NO)�$4;€1'ÀYES�7À6¨6A4 *** PASSIVE BANDPASS FILTER DESIGN ***�$44 This program is based on ELECTRICAL ENGINEERING &�$4CIRCUITS DESIGN by Skilling, Willey, 1961.�$4 It will calculate ideal component values for the�$4T-section and PI-Section filters, given F1, F2,and R�$44What is F1, low cut-off frequency (in Hertz)�$4;€"'What is F2, high cut-off frequency (in Hertz)�$4;€"'ÀÀ7C6dWhat is R, image impedance in mid-frequency (in ohms)�$4;€"'À.�7Ž6¯À.�7š6¯À.�7¦6¯€ÀÀ€.�)ÀÀ€À�If you want T-section type 'T'�$4;€1'ÀT�7ó6ð42Ca=�$ÀÀÀ.�*#5 Cb=�$.��ÀÀ#5 R=�$À#4La/2=�$ÀÀ.�+#5 Lb=�$ÀÀÀ#44 2Ca La/2 La/2 2Ca�$4o----!!----mmmmmmm---:-----:---mmmmmmm---!!-.....�$4 : : :�$4 : m X�$4 Cb = m Lb R X�$4 : m X�$4 : : :�$4o--------------------:-----:----------------....:�$44If you want PI-section type 'P'�$4;€1'ÀP�7&6Ý4La=�$ÀÀ#5 2Lb=�$.�,ÀÀÀ#5 R=�$À#4Ca=�$ÀÀÀ#5 Cb/2=�$.��ÀÀ.�-#44 La Ca�$4o-------:----:-mmmmmmm----!!-----:----:..........:�$4 : : : : :�$4 m : : m X�$4 2Lb m = Cb/2 Cb/2 = m 2Lb R X�$4 m : : m X�$4 : : : : :�$4o-------:----:-------------------:----:..........:�$44Another passive filter calculation (YES/NO)�$4;€ 1'À YES�7a6Ê6d6AHigh cut-off frequency must be higher than low-�$4cut-off frequency�$46ÊThis value must be larger than 0 (zero)�$46ÊAnswer 'P' or 'T' only�$46Ê *** SMALL COIL DESIGN ***�$44Program limitations:�$4 Inductance = 100 microhenries MAXIMUM�$4 Wire size = 12 size MAXIMUM�$4 40 gage MINIMUM�$4 (resistors used as form must be of composite type)�$44PROGRAMS:�$4 1. INDUCTANCE�$4 2. INDUCTIVE REACTANCE�$44 WHICH ONE OF THE TWO PROGRAMS ABOVE YOU WANT COMPUTED�$4;€"'À.��7!‰6"qÀ.�.7!•6 ùÀ.�7!¡6 ùWHAT IS THE DESIRED INDUCTIVE REACTANCE IN OHMS�$4;€"'AT WHAT FREQUENCY IN MHZ�$4;€"'€À.�/.�0ÀINDUCTANCE = �$À# MICROHENRIES�$4À.�17"<6"ºProgram limitation is 100 microhenries MAXIMUM�$46 ùWhat is the desired coil inductance in microhenries�$4;€"'À.�27"º6"<Coil forms:�$4 A = 1/4 WATT RESISTOR�$4 B = 1/2 WATT RESISTOR�$4 C = 1 WATT RESISTOR�$4 D = 2 WATT RESISTOR�$4 E = OTHER FORM�$4 SELECT COIL FORM FROM ABOVE (A,B,C,D,E)�$4;€1'ÀA�7#‹€ .�3ÀB�7#š€ .�4ÀC�7#©€ .�5ÀD�7#¸€ .�6ÀE�7#Ç6#Ê6#Ê6#þWhat is the diameter of the coil in inches�$4;€ "'What gage enameled wire will be used:�$4 (gage 12 to 40)�$4;€"'À.�77$_€.�8À.�97$n€.�:À.�;7$}€.�<À.�=7$Œ€.�>À.�?7$›€.�@À.�A7$ª€.�BÀ.�C7$¹€.�DÀ.�E7$È€.�FÀ.�G7$×€.�HÀ.�I7$æ€.�JÀ.�K7$õ€.�LÀ.�M7%€.�NÀ.�O7%€.�PÀ.�Q7%"€.�RÀ.�S7%1€.�TÀ.�U7%@€.�VÀ.�W7%O€.�XÀ.�Y7%^€.�ZÀ.�[7%m€.�\À.�]7%|€.�^À.�_7%‹€.�`À.�a7%š€.�bÀ.�c7%©€.�dÀ.�e7%¸€.�fÀ.�g7%Ç€.�hÀ.�i7%Ö€.�jÀ.�k7%å€.�lÀ.�m7%ô€.�nÀ.�o7&€.�pÀ.�qÀ.�r 7&6#þ€.�sÀÀ.�tÀÀ.�uÀÀ.�vÀ À À .�wÀ�I�.�xÀ À €.�yÀÀ.�zÀÀ.�{ÀÀ.�|À À À .�}À�I.�~À À ÀÀ7&¤€À6&©€À€À.�B.�€4Wire size = �$À# gage�$4Coil diameter = �$À # inches�$4Number of turns = �$À#4Coil length = �$ÀÀ.�B.�‚# inches�$4More calculations? (YES/NO)�$4;€1'ÀYES�7'n6 ù6'q6A4 *** LONG WIRE ANTENNA ***�$44 When an antenna is more than half wavelength long�$4it is called 'long wire' or 'harmonic' antenna.�$44What frequency in MHz (Mega Hertz)�$4;€"'How many half-waves long�$4;€"'€.�ƒÀ.�„ÀLength = �$À# Feet�$4Note: If this antenna is fed in exact center at �$À.�…# ft.�$4no unbalance will occur on any harmonic frequency.�$44More calculations? (YES/NO)�$4;€1'ÀYES�7))6(6A4 *** DIPOLE OR HALF WAVE ANTENNA ***�$44Frequency in MHz (Mega Hertz)�$4;€"'€.�†À4Actual half-wave lenght is �$À# feet�$4À.�‡7)È€À.�ˆÀ.�‰7)Ú€À.�ŠÀ.�‹7)ì€À.�ŒLenght corrected to free space factor and to capacitance�$4of insulators is �$À# feet�$44€.�À€.�ŽÀ<----------�$À# ft-------->�$4 <-�$À#ft->�$4o----------o-------o----------o�$4 o o ^�$4 o o E = �$À# ft�$4 o=o <- 600 ohms line 3.75 in spaced #16 wire�$4 o o 5 in spaced #14 wire�$4 o o 6 in spaced #12 wire�$44More calculations (YES/NO)�$4;€1'ÀYES�7+è6)[6A4 *** TIME CONSTANT CALCULATIONS ***�$44NOTE: If you wish to substitute Farads by MICROfarads then you�$4 must use resistance in MEGohms in order to get result�$4 in seconds.�$4What is the resistance in ohms�$4;€"'What is the capacitance in farads�$4;€"'Time constant = �$ÀÀ#seconds�$4More calculations? (YES/NO)�$4;€1'ÀYES�7-\6,6-_6A4 *** RESISTANCE OF WIRE ***�$44What is the desired resistance in ohms�$4;€"'What A.W.G.(B&S) size wire NO. is available?�$4 (if unknown, enter '0')�$4;€ "'À .�7.+62)À .��7.:€!.�À .�7.I€!.�‘À .�’7.X€!.�“À .�”7.g€!.�•À .�–7.v€!.�—À .�˜7.…€!.�™À .�š7.”€!.�›À .�œ7.£€!.�À .�ž7.²€!.�ŸÀ .� 7.Á€!.�¡À .�¢7.Ѐ!.�£À .�¤7.߀!.�¥À .�¦7.î€!.�§À .�¨7.ý€!.�©À .�ª7/€!.�«À .�¬7/€!.�À .�®7/*€!.�¯À .�°7/9€!.�±À .�²7/H€!.�³À .�´7/W€!.�µÀ .�¶7/f€!.�·À .�¸7/u€!.�¹À .�º7/„€!.�»À .�¼7/“€!.�½À .�¾7/¢€!.�¿À .�À7/±€!.�ÁÀ .�Â7/À€!.�ÃÀ .�Ä7/Ï€!.�ÅÀ .�Æ7/Þ€!.�ÇÀ .�È7/í€!.�ÉÀ .�Ê7/ü€!.�ËÀ .�Ì70€!.�ÍÀ .�Î70€!.�ÏÀ .�Ð70)€!.�ÑÀ .�Ò708€!.�ÓÀ .�Ô70G€!.�ÕÀ .�Ö70V€!.�×À .�Ø70e€!.�ÙÀ .�Ú70t€!.�ÛÀ .�Ü70ƒ€!.�ÝOf what MATERIAL is the wire�$4;€"1'€#À".�ÞS€$À!À#COP�70Ë€!À!.��À#ALU�70߀!À!.�ßÀ#BRA�70ó€!À!.�àÀ#CAD�71€!À!.�áÀ#CHR�71€!À!.�âÀ#GOL�71/€!À!.�ãÀ#IRO�71C€!À!.�äÀ#LEA�71W€!À!.�åÀ#NIC�71k€!À!.�æÀ#BRO�71€!À!.�çÀ#SIL�71“€!À!.�èÀ#STE�71§€!À!.�éÀ#TIN�71»€!À!.�êÀ#ZIN�71Ï€!À!.�ëÀ!À$À#COP�71ã60ƒ€.�ìÀÀ!For �$À#ohms use �$À# feet of No.�$À #À"$ wire�$465-What is distance in feet�$4;€ "'€%À.�íÀ À%.�î72f€.��À%.�ï72u€.�ðÀ%.�ñ72„€.�òÀ%.�ó72“€.�ôÀ%.�õ72¢€.�öÀ%.�÷72±€.�øÀ%.�ù72À€.�úÀ%.�û72Ï€.�üÀ%.�ý72Þ€.�þÀ%.�ÿ72í€.�À%.72ü€.À%.73€.À%.73€.À%.73)€.À%. 738€. À%.73G€.À%. 73V€.À%.73e€.À%.73t€.À%.73ƒ€.À%.73’€.À%.73¡€.À%.73°€.À%.73¿€.À%.73΀.À%.73Ý€. À%.!73ì€."À%.#73û€.$À%.%74 €.&À%.'74€.(À%.)74(€.*À%.+747€.,À%.-74F€..À%./74U€.0À%.174d€.2À%.374s€.4À%.574‚€.6À%.774‘€.8À%.974 €.:À%.;74¯€.<The smallest copper wire for �$À# ohms at distance of �$À # feet�$4 that can be safely used is No.�$À# A.W.G.(B&S)�$4More calculations? (YES/NO)�$4;€1'ÀYES�75c6-‰65f6A4 ***RECEIVING & TRANSMITTING CRYSTAL CALCULATIONS*** �$44What is the receiving frequency? (in MHz)�$4;€"'What is the transmitting frequency? (in MHz)�$4;€"'67ÄWhat is 1st IF freq.(in MHz) of rec.�$4;€"'What is RECEIVING crystal divider�$4;€&"'What is TRANSMITTING crystal multiplier�$4;€'"'4For receiving on �$À# MHz (with �$À# MHz IF) & �$À&# divider�$4 ORDER �$ÀÀÀ&.=#KHz receiving crystal�$4For transmitting on �$À# MHz (tranmit multiplier=�$À'#)�$4ORDER �$ÀÀ'.># KHz transmitting crystal�$44More crystal freq. calculations? (YES/NO)�$4;€1'ÀYES�77Á65¢67Ä6AWhat make and model transceiver?�$4 STANDARD 146A - MOTOROLA 80D - VOICECOMMANDER�$4;€(1'€(À(.?SÀ(STA�78768zÀ(MOT�78W€.@€&.A€'.B66˜À(VOI�78w€.C€&.D€'.E66˜66€.F€&.G€'.H66˜MANDER�$4;€(1'€(À(.?SÀ(STA�78768zÀ(MOT�78W€.@€&.A€'.B66˜À(VOI�