
PI]OGRAMMING
COMPUTE[{ SOFTWARE

A translation of Programmirovanie

Volume 7, Number 3 May-June, 1981

CONTENTS

Engl./Russ.

An Approach to fl~e Construction of a Universal I.anguage Schenm. Semaatics

-V. A. Tuzov ..
Formalization of Transformation Algorithms for Large-Block Programs

-V. N. Kas~yanov
Computer Graphics in Program Banks - V. P. Shampal
A Methol[for the Plaoning of Conaputation Chains - Yu. A. Buldmhtab, A. I. Gorlin,

S. S. t<amynin, D. A. Koryagin, aud t~. Z. L)a~bimskii
A Text Editor with an Extensive Instruction System for OS/ES - N. N. Bezrukov
DeterminaLion of Blocking Factors for Joiatly Processed Files - Ya. V. Trifonov ...
Software hnplementation of Infornmtion Retrieval Systmns on SM Minicomputers

-A. I. Kitov, V. A. Lltvinova, E. I. Dubinina~ aod V. N. Taralova
Simulation of Operating Systems - N. A. Krinitskii and T. F. Chernova

127 7

133 16
141 26

148 34
152 39
159 55

164 65
173 77

The Russian press date (podplsano k pechati) of this issue was 5/14/1981.
l~ublication therefore did not occur prior to this date, but must be assumed
to have taken place reasonably soon thereafter.

TEXT EDITOR WITH AN EiXTENSIVE

DFSTRUCTION SYSTEM FOR OS/ES

UDC 51:581.3.06

Tim article describes the editor NEATED with its powerhd and flexible isstruction system.
The instructions are imp[ementsd nsing eymnmtric lists. Structural[y~ the editor is designed
as au luterpreter for a single-pass programming language: the parser controls a lexic analysis
block and semantic subprograms.

Text editors are amoug tile programnmrs’ most Important tools. The availability of particular editors
may significantly influence programmer pr~uctivlty. Tim text editors currently available uuder ~/ES [1-4]
are characterized by a relatively primitove instruction system which is not conducive to highly pr~uctive
editing. The main feature of the editor ~ATED described in this paper is its powerful and flexible instruc-
tion systsm which substautially simplifies the performance of typical text edittsg opm’ations. NEATED Is avail-
able iu two versions: NEATEDI used lnteractlve[y from the operator console, and NEATED2 used on ES 7066
display terminals. An important feature of both versions is that interactive and batch processing can be cmn-
bined in a stsg[e editing sessious.

A Review of tim lnstructios System. Iu fenctiona[terms~ there Is not nmcb to dlstin~mlsh between a text"
editor, a Ibm manipulating lang~mge (such as SNOBOL), cud a macro generator (e. g., a PtJI preprocessor).
In some cases~ the three facilities overlap. As an e~ample, consider the substitution of some idenUfier for
another identifier in a program. Yet the characteristic constructs of line manipulattsg languages and macro
generators vir~uaI[y do not occur iu text editors [5]. On the other hand, the lnstrnc~ioa systsm of a text editor
may be regarded as a simple symbol manipulating [an~age. We therefore tried to increase the power and ~e
convenience of the editor instrudtion system by incorporating the characteristic constructs of symbol mani-
pulating lan~ages. We moreover attempted ts make each conmmud as shor~ as possible, so as to reduce user
ratine in keying In the commands aud avoid frequent input errors. Iedescribingthe instruction systemwewill
use a modiftsd BNF. in our version of the BNF, square brackets denote optional strings, and braces denots
iteration with zero or more repeats.

The commands may be keyed Is ouo to a Itso, or ts groups separsted by the syml)ol "/". The editor
displays tim current [tee (on tile cossole) or page (on tile screen) after execntlng all the commands in a single
line. The user can correct the dtsplayed page with the aid of the display control keys before keying in the
next command. All the NEATI~D commands have the same syntax:

<command> ::= [<range>l<command code> [<range>][<modifier~-]

We will see in what follows that this structure allows an extensive default system, markedly simplifying
the comnmnds in many typical cases cud creating siguiftsaut benefits to the user. In reruns if the range of each
command, we usually dtstin~uisb betweea context editors and itse editors. Context editors make it possible to
defi~m the range of a particular command by indicating the text elements that delineate the range, Line ends
are entirely ignored or are considered as "eel" utility symbols. In this sense, context editors are closer to
macrogenerators. Line editors, on the other hand, execute their commands using line numbers, whtsh are
either logical (e.g., the numbers in’golumns 73-80) or physical. They are more convenient for working with
program texts, where a line is often a single operator, l~oth range deftsition methods should be regarded as
complementary, and an attempt has been made In NEATED to achieve a flexible combiuatlou of the features of
both context and ltue editors. The range of a NEATED comnmud cossists of one or several lbms specified by
their addresses~

<range> :: = <address> [, <address> I <address> [; <address>]

Translatsd from Progratmnlrovanie, No. 3, pp. 39-48, May-June, 1981. Origtsal article submitted
July 7, 1980.

152 0361-7688/81/0703-0152 $07.50© 1982 Plenan~ l~abllshlng Corporation

All address in NEATED is a melb¢×l of locatiog the required Ibm. If the raege addresses are separated
by a semicohm, the current lice will be marked by a special pointer, tile cursor (see below), before the editor
proceeds to look for tim lice correspouding to the next address:

<address~- :: = [<begin search>]{<:search direction~. < context>.}
<bcgiu searcb~- :: = ~Iogical oumhor~. I <.begin text~ I <:end text~ I .~cersor~-.

Logical m~mber is the uumber assigued to the given liue of text before beginning editing, i.e., this is
the physical line nomber in the initial text. The logical uumber is uurelated to the number in columns 73-80
of the giveu liue, so that unnumbered files and raw data files with panchcard structure can be edited. Be~
tex__t (symbol ’<’) is the first liue in the editor buffer at the current time, regardless of its logical number.
Similarly, end text (symbol ~>~) is the last line iu the current buffer. CurseF (~*~) is a marker attached to
the so-called current liue which is priuted ou the console or is marked by ~*~ on the display screen after the
completion of the last command. After the completiou of each commaud, tbe carrent line becomes the last line
correspondieg to the lower boned of the right range.

Search directiou is giveu as ’ ~’ for forward search {dowu the text) and *’-~’ for backward search (up the
text). The co,~te~t rosy be defioed iu three alteruative ways: l) by di_~l)laccment (<., 5), indicating tim nnmbor
of floes to be skipped for\yard or backward from the given line; 2) by a liter, el wbicb directs the search to find
a line coutaisiug the given literal as a subliue (* + [TEXT]). A repetition factor may precede the literal (* +3
[TEXT]), indicating bow many lines containiug the giveu striug should be found; 3) by a molecule, ~vhich is de-
fined as a part of a liue between blauks. For example, the line "PUT SKIt) LIST(A)"; consists of three mole-
cules, "PUT*~, "SKIP", and "LIST(A);~, and tim corresponding search commands may be defioed as
or as ~+&[SKIP] 2, or as <+&[LIST(A);]3.

If begin search is cot specified, NEATED1 assumes by default begin text or end text, whereas NEATED2
assumes the begi,ming or the eed of the curreet page on the display screeu (accordiag as forward or backward
search is specified). For NEATEDI the expressiou 4~ 5 thus may be written as ~ 5.Expressioos of arbitrary
complexity are allowed, e.g.,

÷ --i0--3 [DltOC;] ~ 2 [DCL] , 3& [FIXED]2

NEATED uses an e:,¢ensive system of defaults which simplifies the composition of colnmands in typical
cases. In particslar, the following conveutions apply to the addresses of left and right ranges. If file left
range is undefined, the current lille is assumed. If the left aed the right range are dofieed by the same ad-
dress~ the line with this address is the range. If the right range is undefined, it is assumed to coincide with
the Ieft range. For example, 5A is equivalent to 5A5 or 5,5 A 5, 5.

Following the geuera[policy of OS/ES \\,bich uses English-language uotati6n, the editor commauds are
r~presented by the first letters of the corresponding Eliglieb words. The editor commands can be divided into
four groaps: iesert-delete eommauds, output commands, rearrangement commands, and pseudocommands.

Insert--Delete Commands. This group includes the following eommauds: D (DELETE), I (INSERT be-
fore), A (ADD after), It (REPLACE), and X (I’-’XCHANGE). For example, 3,25D deletes liues 3-25; D deletes
the carrent line; 215 inserts lille 5 before line 2 (deletieg line 5 from its previous location); 2A5, 9 adds lines
5~9 after lice 2; 2,5 R7,25 is equivaleut to 2,5 D/I7,25; 2,7X9,27 is equivalent to 912,7/819,27. Although all
these examples nee logical addressiog, auy other addressing method may be need, e.g.,

, [PROC;I; * t [END;]<t [PROC;}; * ~ [LND IX ~--

We see from the above examples that NEATED will fairly easily "reshuffle" the program text (this is
usually a weak spot in the existing OS/ES editors). In most cases, however, new lines must be introduced
into the text. This is the functiou of the modifier, which alters the addresses of the right range in the current
commaed. We distinguish between iuput and edit modifiers.

Aa inpnt modifier introdnces a sequential file, a library member or a group of liues, altering the right
range addresses to tile addresses of the sublist representing tile oew text. For example, a TEXT adds the
file TEXT after tbe current line; I (B1M) inserts the member BIM before line 5; <,> R (CAMAC) replaces the
buffer content by the member CAMAC; 2,5R =/IF A THEN N = 1;/ELSE N= 0; /&replaces lines 2-5 by the col
responding expressions (the symbol "/’ is the line separator, aud "/&" marks end isput). Tim input modifier

153

A (PIIOLOG)/ A TEXT / A (EPILOG)

The edit modifier corrects or edits a groap of llses. The right range addresses are replaced by the
addresses of the sew sublist, which consists of as edited text specified by the right range addresses. Since
ie most cases the reqaired editing involves minimum cbasges tn one or several lines, the updating is done
using a simple langxmge with five operations. This lasgaage largely compensates for the limited editing fea-
tures of the ES 7066 display functional keys, without duplicating the flmctioss provided by the display hard-
ware (e. g., tabulating, substitution of single letters iu a line, etc.).

The syntax of the edit m(xtifiers is as follows:

edit modifier> ;: = [<pattern>] (operation> [<literal>].

The edit modifier specifics one of the following five operations: copy (symbol ’]’) snbstitute (’-’), line "
add (symbol ~)~)~ lice insert (symbol ~("), line delete (’~

1. ~ replicates several lines from one 10cation in the text to another. For example, 2A5, 9] adds
a copy of lines 5-9 after line 2. This operation requires neither pattere nor literal.

2. Sebstttute replaces a wlmle line or a par~ of a line by a given literal. If no patters is specified, the
entire line is replaced; if the pattern is a [iteral~ the first strieg matched by this literal is replaced; if the
patters is a molecule number, the specified molecule is replaced. For e~ample, 5R ~ [E~;] substitutes
~END;~ for Ibm 5; A[PUT] ~ [WIWI’EI inserts after tbecurrent line its copywitb string"WRITE" substituted
for string "PU’I’"; "WRVt’E"; R&4 ~: [SKIP] replaces fl~e curren~ tlee by a line lu which "SKIP" has been sub-
stituted for the fourth molecule.

If no literal is specified, the sublist defined by the modifier : consists of one blank line. For example,
5A = inserts a blank lise after line 5. If an isteger is specified aRer tim symbol =, au ieteger number of blank
lines will be inserted, e.g., 7A =4 adds 4 blank lines after line 7. This featere easily "spaces out~ the text on

Om dispIay screen.

3. Line Insert inserts a gigeu literal in the specified position in the line. If no pattern is specified, the
literal is inserted at tim beginning of the line; if the pattere is a literal, tim given literal is inserted before the
first occur)ence of the pattern in the given line; if the pattern is a molecule sumber, the given literal is in-
serted before the corresponding molecule. For example, 9R ([LOOP:] inserts the labeI" LOOP:" at the begin-
niug of line 9; R[EDIT] ([SKIPI inserts tim string ’*SEIP" before the first occurrence of the string ~EDI’I" tn the

curreu~ llhe; H&5 ([END;] inserts ~END~" before tim fifth molecule.

4. Lise Add is similar to line insert. For example, 7R) [;] adds ’;" at the end of line 7; R[GET])[SKIP]
adds the string SKIP after the s[rin~ GET.

5. Line Delete makes it possible to delete a specified part el the line. Tim entire part of the line be-
fore (’(’) or after (’)’) a specified string can be deieted. Thus, 7R [SKIP]~ deletes the string ~’SKIP’ frmn
line 7; R&2~ deletes the second molecule from the current line; 7R [STATIC]) deletes tim tail of line 7 aRer
**STATIC" ~ 9R [THEN](deletes the bead of lise 9 before "THEN."

Stone of the operations nmy be combined. For example, 7R[THEN] (([IFM -- 0] substitutes ’~IF M -- 0"
for fl~e he~ of line 7; 9R [THEN])) [PUTSKIP;] substitutes "PUT SKIP;" for the tail of line 9; if the right range
is defi~md by two differen~ addresses~ the m~lifier is applied tn seccession to all the lines is the range~ i. e.,
an implied loop is executed. Those lines to which the modifier is inapplicable are copied unchanged. For
exampie~ 7 A 9, 22 [FIE~] = [TEXT] inserts after line 7 a copy of lines 9-22 in which the first occurrence of

tim string "FIELD~ has been replaced by ~TEXT. ~

Output Commands. The outpat commands include W (WRITE) and P (PHINT). la distinction from the
other ~ommauds, the d~fanlt left range for the oatput conmmnds is the entire text bsffer.

The command W ouipnls the I)ar~ of the buffer specified by the left range as a sequential file or a library
mamber. For example, W TEXT outpnts the buffer as file TEXTI 5~ 57W (’I’E~I’) ontputs lines 5-57 as library
member TEXT.

154

The command P (altputs ihe left range to prh~tcr. The printed tine~ are oumbored ou lho loft marglu~
" as well as in colamn~ 73-86~ to [acilita~e visual search for a liuo with a giveu uumbor. For oxamplo~ the
command P priuts out tlm entire edited te~t; 2~79P prints out lines 2-79.

~ATED has several features for manipulating the library index. No special commands are provided
for these hnmtions: D csu be treed to delete a member from the library index, and R cas be used to reuanm
a member. Thus (TEXT)D deletes the member TEXT from tbe iudex; (BIM)R(TEXT) renames DIM as TEXT.

Rearrangement Comnmnds. This groap includes the commands C (CONCATENATE), S (SPLIT line into
two), and B (BIANKJUSTIFY).

The commasd C adds a line or a group of iiues specified by the right range at the cod of tim Ibm speci-
fied by the first address. Leading and trailiug blanl~ ia tim added lines are eliminated. For example, 2C4~5
adds at the end of Ibm 2 the contours of lines 4 and 5. The comnmnd C cau be used with an edit m~ifier. For
example, 2C5 2~ adds at the end of line 2 the contents of line 5 after deleting the second molecule.

¯ be command S splits the liue specified by tim first address into two fines at the given pattern bouudary.
The pattern boandary is specified by an edig modifier. Ouly two m~if~ers are allowed~ <pattern> ~ (~ indicates
split at the le~t esd of the pattern; <l)atteru> ")" specifies split at the ri~t end of the pattern. For example,
6 S [TIIEN] splits line 6 into two~ and the second line starts with the string ’TtIEN’; 6 S [TIIEN]) spll~s liue 6
into two, aud the first line eu~s with the string ’TtIEN. ’

The command B eqaalizes or shifts tim lines in tbe leR range by changing tim number of leading blan~.
2~e line contour does not change. The commaud has several versions, e.g., 2,5B-4 uses four leading blaul~
in liaes 2-5; 2, 5B-4 reduces the number of leadiag blanl~ by 4; 2,5B7 equalizes tim camber of leading blaal~
in iines 2-5 with that in line 7; 2,52B=5-1 will set the namber of leadiug blan~ in lines 2-52 to five, except
ie those lines with one leading blank.

Pseudocommand~. l)sendocomnmnds are used to control NEATED b!.the process of text editing. We
will only consider tim most important pseedocommands iu this group.

The commands D (UNFIXORDERS~ meaniug "clear command field") and F (FIXORDERS~ meaning "keep
comma~d field") costrol the ovcrwritb~g o~ executed commands on the display screeu. After the comma,~ U
is execated, the editor funcLioes iu a m~e deleting the performed commaeds from the screeu (except when

they contain an error). Similarly, after the command F is executed, the editor switcbes to a m~e keeping
the executed commauds on the screen, these commands then c~n be executed repeatedly by pressing the INPUT
key of the dispiay terminal, Iu Lbis mode, it is easy to scan the text steppiug bacl~ard or forward (roll m~te)
and also to ui~ate executed commands using the fuuctional keys of tlm display terminals when a similar
quence of commasds must be repeated several Limes.

Tim conmmsd G (GO) makes it possible to organize simple loops. The number of loop repetitions may be
specified explicitly or implicitly. By specifying a command of tbe form G = <:integer>, we execute all the pre-
ceding commands <integer~ nnmber of times. If the command specifies one or two left arguments, the com-
mands will be repeated until one of tbese arguments reacbes the end of the text or the cursor value exceeds
the value of the second ar~.,ument. For example, < ~ [T.EXT] R [TEXT] = [FIEI,D~/G replaces all the occur-
relines of string ’TEX’ITM by string ’ FIELD*~; 20 ~ [TEXT] R [TEX°r] ~ [FIEI,D]/60G replaces all tile occurren-
ces of string ’TEXT*~ by striug "FIEI.D~ in flues 20-60; <+ [TEXT] R [TEXT] = [FIE LD]/G = 5 replaces the first
five occurrences of striug ’TEXT~ by string "FIELD. ’

The comsmnds ~: :~~:, 12f]~, @ @ ¯ store the specified string In the variable :~:, ~, @, respectively.
NEATED has four line w~rlablcs, whose ideatifiers are fixed and cannot be altered by the user: these are ",
:~, ~, @. These variables may be used in all commaeds to replace litera[s. The system variable ~ re-
presents the last literal. Tim values of the variables :~, ~, @ may be assigned by the corresponding pseudo-
commands. For example, :~----[TEXT] assigns the value ~TEXT" to the variable~; ~TEXT";~ ~ stores
the last literal in the variableEI; 5@stores line 5 iu the variable@.

The command % (procedure definition) extends the standard iustruction system by means of user defined
commands. Procedures are defined with the aid of the procedure brackets ~%’ <:letter> and ’letter’ ~%’,
where letter is the procedure name. Any sequence of sylnbols may be enclosed between procedure braokefs~
which in particular may include calls to other pl~ocedures. For example, when editing programs whose text
is distributed between several l.ibrary members, it is ofteu aecessary to use commands of the form W/<, >
D/A (<member name>). For brevity, we can defiue the procedure %R W/<,) D/A R %. Then %R (TEXT) is

155

~quivalent to tile comlunuds W/<.,:. D/A (TEXT). The vsrlables :]]:, ~~, ~l) also Inay be esed as procedure
parameters. Two system defined procedures are available: these are ~. ’ and ’:~. The procedure ~ . ~ is

*+ID.

The command E (EXECUTE) dycamlcally switches the editor to batch mode. For example, E COM
switches the editor to read commands from file COM. When end file is reached or an error is detected in
one of tile commands, tim interactive mode is resumed.

The conunand Q (QUIT) termiaates the NEATED session and transfers control back to OS/ES. Q does ¯
not output any data.

An iml)ortaut feature of NEATED ts the availability of so-tailed bicommaeds. A blcommand is a com-
mand defined by two letters, iustead of the nsual one. Each bicommand is equivalent to two successively spe-
cified commands, asd ~be right range of Um firs~ command ts used as the left range of the second commaed.
For example, 7RT24, ~5 is equivaleat to 7R24, 55/24, 55T; TAP (TEXT) is eqnivalent to 7A (TEXT)/7 ~1, * P; 2,
8TD is equivaleu~ to 2~8’1"/2,8D; WQ (TEXT) ts equlvaloet to W (TEXT)/Q.

ln~i)lemontatton Foatnres. A basic p~’oblem Ill the design of text editors tsibo choice of the represen-
tation method for the edited text. The representation methyl essentially influences the instruction system,
since editor commands which require for their implementation various operations ~hat are difficult to perform
in tl~e particular text representation generally remaia unimplemontcd or contain implonloutation errors. Con-
versely, If a useful command is easily implemeuted in a given representatioa metb~, i~ will eveutuaily be in-
cluded in the instruction system. In this sense, every te~ represen~tion meth~ as if suggests certain com-
mands which are simply unthhfl~ble of iu other represen~tions.

The most common representation meth(xl for tile edited text is in the form of a sequential file [4, (Chap.
7), 6, 7]. The instructions which are easily realized with the sequentiM file representation are restricted to
~delete, ~ ’replace~ ~* aad insert. " The range of each command is usually specified by line numbers in the
edited te~. Only forward context search is possible and it is generally used iu order to move fl~e cursor to a
certain line. During interactive editing~ the changes must be made in strict scquegtial order (as ao backward
stepping is allowed)~ which creates cer~in inconvenience. On the other hand, snch editors are compact (16-
20K)~ stmpie~ and reliable.

In another common represeutation meth~, the edited text is stored la the direct memory as an array of
fixed-len~h lines [3~ 8]. This is also a fairIy simple meth~, but the storage space required is proportionaI
to the number of lines in the edite&~ext. With this methyl, all fi~e previous comma~ls are easily implemeu-
ted~ plus interchange of whole lines in ~he edited text. However, most text manipnlatioss tnvolve moving the
~te~t tail~ (spacing out wbee new lines are inserted or compressing when lises are deleted). Wifi~ large texts,
this creates an excessive load en Um central pr(~essor nell (CI)[I) when severul interactive ternfleals eegage
in edit sessions at fl~e same time. Since the method is highly wasteful of direct s~orage, It is often combined
witb ~e previous method: a fixed number of llues ("page~) is read into memory, which corresponds to fl~e size
of the display screen or fl~e len~h of a physical block on disk. In this case, a multilevel instructios system is
uscd~ wlfl~ only some of the commands available at each level. To reduce the nu~bber of errors due to calling
otber level commands, the allowed conlnlands are usually displayed ou the screen hi the form of a ’~menu. ~*

The STO editor developed at the Moscow Soviet ScieaLific-Research and Applied Institute of Computerized Ma-
nagemen~ Systems Is a representative of this class.

Sigaificant reduction of memory requirements can be attained by compressing all trailing mid leadiag
btanl~ and representing flxe tex~ as an array of variable len#b lines in the direct memory [8]. Xt~en flie text
Is stored as a sequential file wlflI fixed-len~b recoils, each line genel’aily contains 40 (P~I) to 60 (Assemb-
ler) trailing blanks, which may be omitted when ~he te~ ls loaded into direc~ memory. Tiffs representation
allows bidirectioaal context search, but it is not suitable for implemenLing such commands as ~’move a group
of lines, ’t *’interchm~ge a group of lines, ’t copy a group of lines to a new location, ’~ e~c. Neverflxeless, this is
a hi~xly successful metb~ of text representation, especially if ~he texts are also stored in exteraal files in
compressed form, i.e., witbou~ ~railing blaul~, and tile lines are separated by a special ’~end-of-line" sepa-

rator.

The mos~ flexible iustruction system can be obtained when the text is stored as a list. ’Ybe lis~ elemests
may be either lines of ~ext or i)nisters to lines s~ored in a direct access file [9]. The latter methyl uses essen-
tially less dlrec~ Morage space, bat context search tnvelves excessively frcqucet accesses to disk. WiU1 list

156

organization of tile edited text, most of the lille moves between different locations can be implemented by sire
ply aitering the corresponding pointers [10]. Backward coutext search can be simplified by intr~ucing an
additional pointer, i.e., organizing the ~ext as a symmetric list [11]. "~is metb~ was actually used in
signing ~ATED. Although modern programmiug teclmolo~ recommesds restricting the m~ule leu~h to
aboat a huedred lines, the symmetric list representa~ion does not essentially restric~ the te~t size. When
each line is converted into a list elesmnt, trailisg and leading blanl~ may be eliminated, thns reducing the
storage space by a factor of 3-5 for PL programs and 5-10 for Assembler programs.

With the exception of modnles intended for working with libraries and the display~ ~ATED is written
in PI]I. The list is therefore organized as a based sh’ucture allocated by the operator ALLOCATE:

01CIIUNK/*LIST ELEMENT*/EASED (POINT),
02 NEXT/* POINTER TO NEXT ELEMENT~/POINTER,
02PREV/~POINTER TO PREVIOUS ELEMENT’/POINTER,
02NUMBER/~LOGICAL LINE NUMBER*/BIN FIXED,
02 BLANKS/*NUMBER OF LEADING BLANKS~/BIN FIXED,
02 LENTEXT/* LENGTII OF LINE TEXT*/BIN FIXED,
02 ’I’I,~X’I’/~ 1,1NE TEX’I’~/CIIAR (LPNE LENREFER (LENTEXT));

~i]lis structure lnakes it possible to implement all tile commands using a common methodology: if a line
is moved, only the pointers of the corresponding list elements are changed; if a Ibm is altered, the old ele-
ment is destroyed by tile operator FREE, and then a new elmncnt is created, which is linked by a pointer to
the prccediog and sncceeding list elements; if a lille is inserted, the corresponding list elmnent is provided
with a pointer linking it to the appropriate location in the list.

Storing the leading blanks in tile field BI~NgS not only reduces the storage space but also simplifies
tile implmnestation of rearraagemen~ commaods. For example, tile command B is implmnentod by scanning
the correspouding part of the list and ul~ating the BLANES Reid of each element.

Parsing is done by direct scasuing of the symbols delivered from the lexic analyzer, without resorting
to a stack. The parsed command is converted into iutermediate form for subsequent interpretation. The
command is iaterpreted ouIy after the parsing has been successfully completed, which in some cases prevents
spoiling the text by an erroneons command. Diagnostic messages for synta’x errors iu most cases are cons-
tructed automatically.

The lexic analyzer nses the algorithm described ia [12] and has two entry points: SCAN which gets the
next lexeme, and OMIT which gets the nez4 lexeme with type checking. The allowed types are coded symbo-
lically (e. g., the code X corresponds to literal, code A to identifier, code 9 to integer, etc.). The allowed
types of the next lexeme are combined into a line, which is passed as a parameter when OMIT is called. For
example, if tile next lexeme in the line ~5 +-’ is ’+~, CALL OMIT (~AX9t); will deliver the following automa-
tic diagnostic message:

FOLLOWED BY "=" INSTEAD OF IDENTIFIER, LITERAL, OR INTEGER

The notions of "procedure’ and "macro" are virtually identical In tim interpreted language. As a re-
sult~ the procedure body (or the macro valne) can be inserlod at the lexic anaIysis stage. Variables are also
treated as system defined macros, and the lexic analyzer substitutes for them a literal with the appropriate
value.

Ttm design oxtlsrlesce with NEATED shows that tile organization of a text editor as an Interpreter and
especfally the introdnction of a lexic analyzer are more thau justified by resulting simplification of hnple-
mentatiou aud debngging. Tile lexic analyzer, is clearly snperior to the collection of snbprograms ("separate
integer," "skill blasks," etc.) recommended in [13].

The communication with display terminals is organized by reading the entire scredn lute direct memory,
with subsequent screen renew. In this way all the lines on the screen can be analyzed, while changing the list
elements corresponding to the liues modified by the filnctional display keys.

This communication mode does not restrict the system to a partimdar display model (e. g., ES 7920 dis-
plays can be easily used). Changing the display only requires an appropriate display linkage modnle which
sbbuld perform the above functions and Ulxlate the lead module. A shortcomiag of this method is that it re-
quires a separate direct memory buffer of corresponding screen size.

157

The editor has been in operatlou since Aagust 1979~ and it bas proved to be much faster is actual use
than the standard OS/ES editors. Although NEATED bas a fairly extensive instructiou system, the commaed~
are easily learned by olost asers tll about oue elolltb. Moreover, there is 11o need fox" most users to learn all
t~m comma~ds: a snbset of the hmtructtou system may prove qulte sufficient (e. g., addressing by logical ibm
numbers and insert-delete commands without correction modifiers). Otber comma~is cae be acquired when
and if aecessary.

A shortcoming of NEA’I~ED is the relatively large space req(~Irement (about 801,:), wblcb is abost twice
the space needed by simple editors. However, this shortcoming is uot very acute in megabyte nmmory com-
pnters. At the same time, user response iadicates tbat NEATED will cope with almost auy text manipulation
task (although sometiams not without diffictllty). NEATED has been applied to edit FORTRAN IV and PL/I
programs.

NEATED is available as part of tim NEAT software package [14-16] developed at the Ukrainlau Scientific-
Researcb Institute of Psychology.

LITERATURE CITED

1. OS/ES. Utilities. Data Manipulatlon~ Priuter Output, aud Puncbing. Programming Manual [in Russian],
Moscow (1977).

2, OS/ES. Time Sbariag h,I~ie, Commaud Langeage. Programming Manual [In Russian], Moscow (1978).
3. A.G. Rubiu and V. K. Smirnov, "An interac~lve editor for alphaeemerlc displays uader ~/ES, " Pro-

priut Inst. Prild. Ma~. Akad. NaukSSSR, No. 117, Moscow (1976).
4. I.V. Vel’bi~kii, V. N. I~akovskii, and L. I. Sbotmov, A Programming Techuology Pac~ge for ES

and B~SM-6 Computers [in Russian], Statistika, Moscow (1980).
5. A. Dam and D. E. Rice, "On-line text editing: a surveys" Compat. Surveys, ~, No. 3, 93 (Sept. 1971).
6. S.R. Bourne, "A desigu for a text edltor~" Software- Pract. Exper., ~ No. 1, 73 (1970).
7. P. Hazel, "A general-purpos¢~text editor for OS/360, ’ Software -Pract. E~per., ~, No. 3, 389 (1974).
8. P. Deutsch and B. W. Lampson, "An on-line editor~" CACM, 10, No. 12, 793 (1967).
9. I.A. Macle~, "Design and implementation of a display oriented text editor," Software - Pract. Expe}’.,

~, No. 4~ 771 (1977).
10. .D. Foster, List Processiug [Russian translation], Mir, Moscow (1974).
11. J. Weizenbaum, "Symmetric list processor," CACM, ~, No. 9, 524 (1963).
12. N.N. Bez~fl~ov, "Compilation priuctples for tbe RYaOD lan~xmge," in: System asd Theoretical Prog-

ramming [iu Ilussiaa], Isst. Kibern. Akad. Nauk Ukr. SSR, Klev (1979), p. ~9.
13, B.W. I<ernighan and ~. J. Plauger, Software Tools, Addisou-Wesley, Reading, Mass. (1976).
14. ~. N. Bezrukov~ "NEATPL - a tool for simpllfyiug PL/1 progra~n debugging,’ ~rogrammirovanle,

No. 5~ 87 (1978).
15. N.N. Bezrukov, "Geuora~lou of a program for l~rinth~g the ducument header from tim description of the

header s~ruc~ure~*~ Programmirovasie~ No. 6~ 92 (~979).
16. N.N. Bezrukov, ~A m~lficatioa of the Floyd-Evans lan~mge," ~rogrammirovauie, No. 4, 53 (1979).

