PROGRAMMING
ano GOMPUTER SOFTWARE

A translation of Programmirovanie

Volume 7, Number 3 May-June, 1981

CONTENTS

Engl./Russ.

An Approach o the Consiruction of a Universal Language Schema. Semantics

S S T T N ' 127 7
Formalization of Transformation Algorithms for Lalge—Block Programs

— V. N Kas'yanov . ..o vi i i, R R R 133 16
Compuler Graphies in Program Banks — V., P, Shampal 0.0, 141 26
A Method for the Planning of Computation Chains — Yu. A. Bukhshtab, A. I. Gorlin,

8. 8. Kamynin, D. A. Koryagin, and E. Z. Lyubimskii e eaaeas e 148 34
A Text Editor with an Extensive Instruction System for OS/ES — N. N, Bezrukov 152 39
Determination of Blocking Factors for Jointly Processed Iiles — Yu. V. Trifonov ... 159 55
Soflware Implementation of Information Retrieval Systems on 8M Minicomputers

—A. I. Kitov, V., A, Litvinova, E. I. Dubinina, and V. N. Taralova 164 65
Simulation of Operating Systems — N. A. Krinitskii and T. F. Chernova w3

The Russian press date {podpisanc k pechati) of this issue was 5/14/1981,
Publication therefore did not oceur prior to this date, but must be assumed
to have taken place reasonably scon thereafter.

A TEXT EDITOR WITH AN EXTENSIVE
DFSTRUCTION SYSTEM FOR OS/LES

N. N, Bezrukov UDC 51:581.3.06

The article describes the editor NEATED with its powerful and flexible instruction system.

The instructions are Implemented using symmetric lists. Struecturally, the editor Is designed

as an interpreter for a single-pass programming language: the parser controls a lexic analysis

block and semantic subprograms. I

Text editors are among the programmers' most important tools, The availability of particular editors !
may significantly influence programmer productivily. The text editors currently available under OS/ES j1-4]
are characterized by a relatively primitove ingtruction system which is not conducive to highly productive
editing. The main feature of the editor NEATED described in this paper is its powerful and flexible instruc-
tion system which substantially simplifies the performance of typieal text editing operations. NEATED is avall-
able in two versions: NEATED! used interactively from the operator console, and NEATED?Z used on ES 7066
display terminals. An important feature of both versions is that interactive and batch processing can be com-
bined in a single editing sessions. ‘

A Review of the Instruction System. In functional terms, there is not much to distinguish between a text
editor, a line manipulating language (such as SNOBOL), and a macro generator (e.g., a P1/1 preprocessor).
In some cases, the three facilities overlap. As an example, consider the substitution of some identifier for
another identifier In a program, Yet the characteristic constructs of line manipulating languages and macro
generators virtually do not occur in text editors [5]. On the other hand, the instruction system of a text editor
may be regarded as a simple symbol manipulating language. We therefore tried to increase the power and the
convenience of the editor instruction system by incorporating the characteristic constructs of symbol mani-
pulating languages. We moreover attempted to make each command as short as possible, so as to reduce user
fatigue in keying in the commands and aveid frequent input errors. Indescribingthe instruction system we will
use a modified BNF. In our version of the BNF, square brackets denote optional strings, and braces denote
iteration with zero or more repeats.

The commands may be keyed in one to a line, or in groups separated by the symbaol n/r, The editor
displays the current line (on the console) er page (on the screen) afler executing all the commitinds in a single
line. The user can correct the displayed page with the aid of the display control keys before keylng in the
next command. All the NEATED commands have the same syntax:

<command> 1= [<range>|<command code> [<range>}[<modilier>}

We will see in what foltows that this structure allows an extensive default system, markedly simplifying
the commands in many typical cases and creating significant benefits to the user. Interms if the range of each
command, we usually distinguish between context editors and line editors. Context editors make it possible to
define the range of a particular command by indicating the text elements that delineate the range, Line ends
are entirely ignored or are considered as "eol" utility symbols. In this sense, context editors are closer to
macrogenerators. Line editors, on the other hand, execuie their commands using line numbers, which are
either logleal (e.g., the numbers tn-éolumns 73-80) or physical. They are more convenient for working with l
program texts, where a line is often a single operator. Both range definition methods should be regarded as
complementary, and an attempt has been made in NEATED to achieve a flexible combination of the features of
both context and line editors. The range of a NEA'TED command consisis of one or several tines specified by
their addresses:)

<range> 11 = <address> [, <address> | <address> [; <address>]

Translated from Programmirovanie, No. 3, pp. 39-48, May~June, 198, Original article submitted
July 7, 1980,

152 036L-7G88/81/0703-0152 $07,50© 1982 Plenum IPublishing Corporation

[i e i Bl St B e R
H .

An address in NEATED is a metheod of locating the required line. If the range addresses are separated
by a semicolon, the current line will be marked by a special pointer, the cursor (see below), before the editor
proceeds to look for the line corresponding to the next address:

<address. :: = [<begin search:-|{<search direction: < context >}
<hegin search.- ::= <logical number. | <begin text.- | <end lexl.» | <cursor.-

Logical number is the number assigned to the given line of text before beginning editing, i.e., this is
the physical line number in the initial text. The logical number is unrelated to the number in columns 73-80
of the given line, so that unnumbered files and raw data files with puncheard structure can be edited. Begin
text (symbol "<"} is the first line in the editor bhuffer at the current time, regardless of its logical number.
Similarly, end text (symbol #>") is the last line in the eurrent buffer. Cursor ("*") is a marker attached to
the so-called current line which is printed on the console or is marked by "*" on the display screen after the
completion of the last command. After the completion of each command, the current line becomes the last line
corresponding to the lower bound of the right range.

Search direction is given as "+" for forward search {down the text) and "-" for backward search (up the
text), The contexl may be defined in three allernative ways: 1) by displacement (<1 8), indlcating the number
of lines to be skipped forward or backward from the given line; 2) by a literal which directs the search to find -
a line containing the given literal as a subline (* + [TEXT]). A repetition factor may precede the literal (* +3
[TEXTH, indicating how many lines containing the given string should be found; 3) by a molecule, which is de-
fined as a part of a line between blanks, TFor example, the line "PUT SKIP LIST(A}"; consists of three mole-
cules, "PUT", "SKIP", and "LIST(A}", and the corresponding search commands may be defined as <+&[PUT],
or as <+&[SKIP] 2, or as <+&[LIST(A);]3. .

If begin search is not specified, NEATEDI assumes by default begin text or end text, whereas NEATED?2
assumes the begiming or lhe end of the current page on the display screen (according as forward or backward
search Is specified). For NEATED! the expression <t 5 thus may be written as +5. Expressions of arbitrary
complexitly are allowed, e.g.,

+— 10— 3 [PROC;] 1 2 [DCL] + 3& [FIXED]2

NEATED uses an extensive system of defaults which simplifies the composition of commands in typical
cases. In particular, the following conventions apply to the addresses of left and right ranges. If the left
range is undefined, the current line is assumed. If the left and the right range are defined by the same ad-
dress, the line with this address is the range, If the right range is undefined, it is assumed to coincide with
the left range. Tor example, 5A Is equivalent to 5bAb or 5,5 A 5, 5. '

i Following the general policy of OS/ES which uses English~language notation, the editor commands are
represented by the first letters of the corresponding English words. The editor commands can be divided into
four groups: insert—delete commands, output commands, rearrangement commands, and pseudocommands,

Insert—Delete Commands. This group includes the following commands: D (DELETE}, I (INSERT be-
fore}, A (ADD afler), R {REPLACE), and X (FXCHANGE). For example, 3,25D deletes lines 3-25; D deletes
the current line; 215 inserts line b before line 2 {deleting line 5 from its previous location); 2A5,9 adds lines
5-9 after line 2; 2,5 R7,25 is equivalent to 2,5 D /I7,25; 2,7X9,27 is equivalent to 912,7/819,27. Although all
these examples use logical addressing, any other addressing method may be used, e.g.,

<+ [PROG;}; ¢ 1+ [END;] X - — [PROC;]; + + [END;)

We see from the above examples that NEATED will fairly easily "reshuffle" the program text (this is’
usually a weak spot in the existing OS/ES editors). In most cases, however, new lines must be introduced
into the text. This is the function of the modifier, which alters the addresses of the right range in the current
command. We distinguish between input and edit modifiers.

An input modifier introduces a sequential file, a library member or a group of lines, altering the right
range addresses Lo the addresses of the sublist representing the new text. For example, a TEXT adds the
file TEXT after the current line; I (BIM) inserts the member BIM before line 5; <,> R (CAMAC) replaces the
buffer content by the member CAMAC; 2,5R=/IF A THEN N = 1;/ELSE N= 0; /&replaces lines 2-5 by the cor-
responding expressions (the symbol /" is the line separator, and "/&" marks end input), The input modifier

153

not only eliminates the command INPUT avallable in most editors, hut alse creates various interesting pos-

" sibilities, such as assembling a text from different components, e.g.,

A (PROLOGY A TEXT / A (EPILOG)

"The edit modifier corrects or edits a group of lines. The right range addresses are replaced by the
addresses of the new sublist, which consists of an edited text specified by the right range addresses. Since
in most cases the required editing involves minimum changes in one or several lines, the updating is done
using a simple language wilh five operations. This language largely compensates for the limited editing fea-
tures of the ES 7066 display functional keys, without duplicating the functions provided by the digplay hard-
ware {e.g., tabulating, substitution of single letters in a line, etc.).

The syntax of the edit modifiers is as follows:

< edit modifier> 11 = [<pattern>] <operation> [<literal>].

The edit modifier specifies one of the following five operations: copy {symbol "|") substitute ("="), line -
add (symbol ")7), line insert {symbol "("}, line delete {711,

1. Copy replicates several lines from one location in the text to another. For example, 2A5, 9] adds
a copy of lines 5-9 after line 2. This operation requires neither pattern nox literal.

2. Substitute replaces a whole line or a part of a line by a given literal. If no pattern Is specified, the
entirve line is replaced; if the pattern is a literal, the first string matched by this literal is replaced; if the
pattern is a molecule number, the specified molecule is replaced. TFor example, bR = [END;] substitutes
BEND;" for line 5; A[PUT] = [WRITE] inserts after the current line its copy with string "WRITE" substituted
for string "PUEY; "WRITE"; R&4 = [SKLP| replaces the current line by a line in which "SK1P" has been sub-
stituted for the fourth molecule.

If no literal is specified, the sublist defined by the modifier == consists of one blank line. For example,
5A = inserts a blank line after line 5. If an integer is specified after the symbol =, an integer numher of blank
lines will be inserted, e.g., TA =4 adds 4 blank lines after line 7. This featlure easily "spaces out" the lext on
the display secreen. :

3. Line Insert inserts a given literal in the specified position in the line, If no pattern is specified, the
literal is inserted at the beginning of the line; if the pattern is a literal, the given literal is inserted before the
first ocecurrence of the pattern in the given line; if the pattern is a molecule number, the given liferal is in-
serted before the corresponding molecule. Tor example, 9R (JLOOP:| inserts the label " LOOP:" at the begin-
ning of line 9; RIEDIT] ([SKIP] inserts the string 1SKIP" before the first occurrence of the string "EDITY in the
current llie; R&S (JIND;] lnserts "END;" belore the fifth molecule,

4. Line Add is similar to line insert, For example, 7R) [;] adds ";* at the end of line 7; RI[GET]}[SKLP]
adds the string SKIP after the siring GET,

5. Line Delele makes 1L poss/ible lo delete a specified part of the line. 'The entire part of the line be-
fore ("(") or after (")") a specified string can be deleted. Thus, 7R [SKIP} 1 deleles the siring "SKIP" {rom
tne 7; R&271 deletes the second molecule from the current line; TR [STATIC]) deletes the tail of line 7 after
HSTATIC"; SR [THEN](deletes the head of line 9 before "THEN. "

Some of the operations may be combined. For example, TR[THEN]| ({{IFM = 0] substitutes "IF M = 0"
for the head of line 73 9R [THEN])) [PUTSKIP;] substitutes "PUT SKIP;" for the tail of line 9; if the right range
is defined by two different addresses, the modifier is applied in succession to all the lines in the range, i.e.,
an implied loop is executed, Those lines to which the modifier is inapplicable are copied unchanged. TFor
example, 7 A 9, 22 (FIELD]={TEXT] inserts aiter line 7 a copy of lines 9-22 in which the first occurrence of
the string "FIELD" has been replaced by "TEXT."

Output Commands. The output commands include W (WRITE) and P (PRINT). In distinction from the
other commands, the default left range for the output commands is the entire text buffer.

The command W oufpuls the part of the buffer specified by the lelt range as a sequential flle or a library
member. Tor example, W TEX'T outputs the buffer as file TEX'T; 5,57W (YEXT) outputs lines 5-57 as library
membeyr TEXT.

154

s e T R TEL TR T .o . PR N . .- ey ——reee

]

IOPRIURE S R S OT URRCL TP

] The command P ouipuls the lefl range Lo printer. The printed lines are numbered on the lefl margin,
as well as in columns T3-80, to [acilitale visual search for a line with a given number. For example, ihe-
command P prints out the entive edited text; 2,79P prints out lines 2-79,

NEATED has several features for manipulating the library index. No special commands are provided
for these functions: D can be used to delete a member from the library index, and R can be used to rename
1 a member, Thus {(TEX'T)D deleiles the member TEXT from the index; (BIM)R(TEXT) renames BIM as TEXT,

Rearrangement Commands. ‘This group includes the commands C (CONCATENATE)}, S (SPLIT line into
two), and B {(BLANKJUSTITFY).

The command C adds a line or a group of lines specified by the right range at the end of the line speci-
fied by the first address. Leading and trailing blanks in the added lines are eliminated. For exampie, 2C4,5
adds at the end of line 2 the contents of lines 4 and 5. The command C can he used with an edit modifier. For
example, 2C5 271 adds at the end of line 2 the contents of line 5 after deleting the second molecule.

f The command S splits the line specified by the first address into two lines at the given pattern boundary,
The pattern boundary is specified by an edit modifier. Only two modifiers are allowed: <pattern> "(" Indicates
; split ai the lelt end of the pattern; <pattern: "M)" specifies split at the right end of the pattern. TFor example,
6 8 [THEN] splils line 6 into two, and the second line starts with the string "THEN"; 6 S [THEN]) splits line 6
into two, and the first line ends with the string "THEN. "

The command B equalizes or shifts the lines in the left range by changing the number of leading blanks.
The line content cdoes not change. The command has several versions, e.g., £,5B=4 uses four leading blanks
in lines 2-5; 2, 5B-4 reduces the number of leading blanks by 4; 2,5B7 equalizes the number of leading blanks
in lines 2-5 with that-in line 7; 2,52B=5"1 will set the number of leading blanks in lines 2-52 to five, except
in those lines with one leading blank,

Pseudocommands. Psgeudocommands are used lo control NEATED iy.the process of text editing, We
will only consider the most important pseudocommands in this group,

The commands U (UNFIXORDERS, meaning "clear command field") and ¥ (FIXORDERS, meaning "keep

command field") control the overwriling of exccuted commands on the display screen. After the command U

is executed, the editor lunclions in a mode deleting the performed commands from the sereen (except when

they contain an error), Similarly, after the command T is executed, the editor switches to a mode keeping
_ the executed commands on the screen, these commands then ean be executed repeatedly by pressing the INPUT
! key of the display terminal. In this mode, it is easy to scan the text stepping backward or forward (roll mode)
| and also to update executed commands using the functional keys of the display terminals when a similar se-
quence of commands must be repeated several times.

! The command G (GO) makes it possible to organize simple loops. The number of loop repetitions may be
specified explicitly or implicitly. By speciflying a command of the form G = <integer>, we execute all the pre-
ceding commands <integer> number of times. If the command specifies one or two left arguments, the com-
mahds will be repeated until one of these arguments reaches the end of the text or the cursor value exceeds
the value of the second argument. For example, <+ {TEXT] R [TEXT)] = [FIELD}/G replaces all the occur-
rences of string "TEXT" by string "FIELD"; 20+ [TEX'I'} R [TEXI] = [FIEID|/ 60G 1"eplaces all the occurren-
ces of string "TEXT" by string "TIELD" in lines 20-60; <+ [TEXT|R [TEXT] = [FIELD)/G =56 replaces the first
five oceurrences of string "TEXTY by string "FIELD. "

The commands 4k 4k, 33 T, @ @ - store the specilied string in the variable 4, I, @, rospectively.

! NEATED has four line variables, whose ldentifiers are fixed and cannot be altered by the user: these are ',
3, O, @ These variables may be used in all commands to replace literals. The system variable " re-
presents the last literal. The values of the variables 4, 10, @ may be assigned by the corresponding pseudo-

’ commands. Tor example, dkdk={TEXT| assigns the value "TEXT" to the variabledf; "TEXT"; IId= " stores
the last literal in the variable; 5@ stores line 5 in the variable @.

The command % (procedure definition) extends the standard instruction system by means of user defined
commands. Procedures are defined with the aid of the procedure brackeis "%" <leiter> and "lettexr” "%",
where letter is the procedure name, Any sequence of symbols may be enclosed between procedure brackets,
which in particular may Include calls to other procedures. Yor example, when editing programs whose text
is distributed between several library members, il is often necessary to use commands of the form w/ <, »
D/A (<member name>). For brevity, we can define the procedure %R W/<,> D/A R%. Then %R (TEXT) is

equivalent to tho commands W/ <, - B/A (TEXT). The variables Hf:, U8, @ also may be used as procedure
parameters. Two system defined procedures are available: these are "." and ":". The procedure "." is
equivalent to "#41%, and the procedure ":" is equivalent to "+-1", Tor example, i, . D is cquivalent to *-1,
*11D.

The command I {(EXECUTE) dynamically switches the editor to batch mode. For example, B COM
switches the editor to read commands [rom file COM, When end fite is reached or an error is delected in
one of the conunands, the interactive mode is reswined.

The command @ (QULT) terminates the NEA'TED session and transfers control back to 08/ES. Q@ does .
not output any data.

An important feature of NEATED is the avallability of so-called bicommands. A bicommand is a com-
mand defined by two leiters, Instead of the usual one, Each bicommand is equivalent Lo two successively spe-
cified commands, and the right range of the first command s used as the left range of the second command.
For example, TRT24,55 is equivalent to TR24, 55/24,55T; TAP (TEXT) is equivalent to 7TA (TEXT)/7+1,*P; 2,
8TD is equivalent to 2,81/2,8D; WQ (TEXT) is equivalont lo W (TEXTV/Q.

Implementation Features. A basic problem in the design of lext editors tg the cholee of the represen-
tation method for the edited text. The representation method essentially influences the instruction system,
since editor commands which require for their implementation various operations that are difficult to perform
in the particular text represontation generally remain unimplemented or contain implementation errors. Con-
versely, If a useful command Is easily implemented in a given representation method, it will eventuatly be in-
cluded in the instruction system. In this sense, every text representation method ag if suggests certain com-
mands which are simply unthinkable of in other representations,

‘The most common representation methad for the edited text is in the form of a sequential file [4, (Chap.
7, 6,7, The instructions which are easily realized with the sequential file representation are restricted to
"delete," "replace," and insert." ‘The range of each command is usually specified by line numbers in the
edited text. Only forward context search is possible and it {s generally used in order to move the cursor toa
certain line. During interactive editing, the changes must be made in strict sequential order (as no backward
stepping is allowed), which creates certain inconvenience, On the other hand, such editors are compact (16-
20K), simple, and reliable.

In another common representation method, the edited text is stored in the direct memory as an array of
fixed-length lines {3, 8]. This is also a fairly simple method, but the storage space reqguired is proportional
to the number of lines in the edited-text. With this method, all the previous commands are easily implemen-
ted, plus interchange of whole lines in the edited text. However, most text manipulations involve moving the
ttext tail? (spacing out when new lines are inserted or compressing when lines are deleted). With large texts,
this creales an excessive load on the central processor unit (CIPPU) when several Interactive terminals engage
in edit sessions at the same time. Since the method is highly wasteful of direct storage, it is often combined
with the previous method: a fixed number of lines ("page") is read into memory, which corresponds to the size
of the display screen or the length of a physical block on disk. 1In this case, a multilevel instruction system is
usod, with only some of the commanes available at each level. To reduce the number of errors due to calling
other level commands, the allowed commands are usually displayed on the screen in the form of a "menu, "
The STO editor developed at the Moscow Soviet Scientific-Research and Applied Institute of Computerized Ma-
nagement Systems is a represontative of this class.

Significant reduction of memory requirements can be attained by compressing all trailing and leading
blanks and representing the text as an array of variable length lines in the direct memory [8]. When the text
is stored as a sequential file with fixed-length records, each line generally contains 40 (PL/T) to 60 {Assemb-
ler) trailing blanks, which may be omitted when the text is loaded into direct memory. This representation
allows bidirectional context search, but it is not suitable for implementing such commands as "move a group
of lines," "interchange a group of lines," copy a group of lines to a new location," etc. Nevertheless, this is
a highly successful method of text representation, espcc ially if the texts are also stored in external files in
compressed form, i.e., without trailing blanks, and the lines are separated by a special tend-of-line" gepa-
rator.

The most flexible instruction system can be obtained when the text Is stored as a list. ‘The list elements’
may be either lines of text or pointers to lines stored in a direct access file [#]. The latter method nses esgen-
tially less direct storage space, but context search involves excessively Trequent accesises Lo disk, Wilh list

166

T T2 T T T e e G poar .- . . B . - s - R i e T
. . . N N R R

R P ol ieiid atcin ey L L s

organization of the edited text, most of the line moves between different locations can be implemented by sim-
ply altering the corresponding pointers [10]. Backward context search can be simplified by introducing an
additional pointer, i.e., organizing the text as a symmetric list [11}. This method was actually used in de- -
signing NEATED. Although modern programming technology recommends restricting the module length to
about a hundred lines, the syminetric list representation does not essontially resiricl the text size. When
each line is converted inlo a list element, trailing and leading blanks may be eliminated, thus reducing the
storage space by a faclor of 8-5 for PL programs and 5-10 for Assembler prograins, :

With the exception of modules intended for working with libravies and the display, NEATED is written
in PI/1. ‘The list is thercfore organized as a based structure allocated by the operator A LLOCATE;

01 CHUNK/*LIST ELEMENT*/BASED (POINT),

02 NEXT/* POINTER TO NEXT ELEMENT*/POINTER,

02 PREV/*POINTER TO PREVIOUS ELEMENT*/POINTER,

02 NUMBER/* LOGICAL LINE NUMBER*/BIN FIXED,

02 BLANKS/*NUMBER OF LEADING BLANKS®/BIN FIXED,

02 IENTEXT/* LENGTH OF LINE TEXT*/BIN FIXED,

02 TEXT/Y LINE TEX'T/CHAR (LINE LEN REFER (LEN'TEXT));

This structure makes it possible to implement all the commands using a common methodology: if a line
is moved, only the pointers of the corresponding list elements are changed; if a line is altered, the old ele-
ment is destroyed hy the operator FREE, and then a new element is created, which is linked by a poiuter to
the preceding and succeeding list elements; if a line is inserled, the correspornding list element is provided
with a pointer linking it to the appropriate location in the list,

Storing the leading blanks in the field BLLANKS not only reduces the storage space but also simplifies
the implementation of rearrangement commands. For example, the command B is implemented by scanning
the corresponding part of the list and updating the BLANKS fleld of each element.

Parsing is done by direct scanning of the symbols delivered from the lexic analyzer, without resorting
to a stack., The parsed command is converted into intermediate form for subsequent interpretation. The
command is interpreted only after the parsing has been successfully completed, which in some cases prevents
spoiling the text by an erroneous command. Diagnostic messages for synfax errors in most cases are cons-
tructed automatically,

The lexic analyzer uses the algorithm deseribed in [12] and has two entry points: SCAN which gets the

- next lexeme, and OMIT which gets the next lexeme with type checking. The ailowed types are coded symbo-

lically (e.g., the code X corresponds to literal, code A to identifier, code 9 to integer, etc.), The allowed
types of the next lexeme are combined into a line, which is passed as a parameter when OMIT is called. TFor
example, if the next lexeme in the line "5+=" is "+*, CALL OMIT (*AX9"); will deliver the following automa-

tic diagnostic message:

"+" FOLLOWED BY "=" INSTEAD OF IDENTIFIER, LITERAL, OR INTEGER

The notions of "procedure™ and "macro" are virtually identical in the interpreted language. As a re-
sult, the procedure body (or the macro value) can be inserted at the lexic analysis stage, Variables are also
treated as system defined macros, and the lexic analyzer substitutes for them a literal with the appropriate
value.

The design experlence with NEATED shows that the organization of a text editor as an interpreter and
especially the introduction of a lexic analyzer are more than justified by resulting simplification of imple~
mentation and debugging. The lexic analyzer, is clearly superior to the collection of subprograms {"separate
integer, " "skip blanks," etc.) recommended in [13]. .

The communication with display terminals is organized by reading the entire screen into direct memory,
with subsequent screen renew, In this way all the lines on the screen can be analyzed, while changing the list
elements corresponding to the lines modified by the functional display keys.

This communication mode does not restrict the system to a particular display model (e.g., ES 7920 dis-
plays can be easily used). Changing the display only requires an appropriate display linkage module which
should perform the above functions and update the load module. A shortcoming of this method is that it re-
quires a separate direct memory buffer of corresponding screen size,

- ool
&
[. e U S AU S ST 0 S P |

The editor has been In operation since August 1979, and it has proved to be much faster in actual use
than the standard OS/ES editors, Although NEATED has a fairly extensive instruction system, the commands
are easily learned by most users in about one month., Moreover, there is no need for most users to learn all
the commauds: & subset of the instrnetion system may prove quite sufficlent (e, g., addressing by logieal line
numbers and insert—delete commands without correction modifiers). Other commands can be acquired when
and il necessary, '

A shortcoming of NEATED is the relatively large space requirement (about 80K), which Is ahoui twice
the space needed by siniple editors. However, this shortcoming is not very acute In megabyte memory com-
puters. At the same time, user response indicates that NEATED will cope with almost any text manipulation
task (although sometimes not without difficulty). NEA'TED has been applied to edit FORTRAN IV and PL/1
programs, ‘

NEATED is available as part of the NEAT software package [14-16] developed at the Ukrainian Scientific-
Research Instifute of Psychology. '

LITERATURE CITED

1. OS/ES. Utilities. Data Manipulation, Printer Output, and Punching., Programming Manual [in Russian],
Moscow (1977).

2, OS/ES. Time Sharing Mode. Command Language. Programining Manual [in Russian], Moscow (1978).

3. A. G. Rubin and V. K. Smirnov, "An interactive editor for alphanumeric displays under OS/ES," Pre-
print Inst. Prikl. Mat. Akad. Nauk 8SSR, No. 117, Moscow (1976),

4. 1. V. Vel'bitskii, V. N. Khodakovskii, and L. I. Sholmov, A Programming Technology Package for ES
and BESM-6 Computers [in Russian], Statistika, Moscow {1980),

5 A, Dam and D. E. Rice, "On-line text editing: a survey," Comput. Surveys, 3, No. 3, 93 (Sept, 1971},

6. - 8. R. Bourne, "A design for a text editor," Software — Pract. Exper., 1, No, 1, 73 (1970).

7. P. Hazel, "A general-purpose-text editor for 0S/360," Software — Pract, Exper., 4, No. 3, 389 (1974).

8. P. Deutsch and B. W. Lampson, "An on-line editor,” CACM, 10, No. 12, 793 (1967).

9 I. A, Macleod, "Design and implementation of a display oriented text editor," Soltware — Pract. Exper.,
7, No. 4, T71 (1977),

10. D, Foster, List Processing [Russian translation], Mir, Moscow (1974).

11. J. Weizenbaum, "Symmetric list processor," CACM, 6, No. 9, 524 (1963).

12, N. N. Bezrukov, "Compilation principles for the RYaOD language," in: System and Theoretical Prog-
rvamming {in Russian], Inst. Kibern. Akad. Nauk Ukr. 88R, Kiev (1979), p. 899.

13. B. W. Kernighan and P. J. Plauger, Software ‘Tools, Addison-Wesley, Reading, Mass. (1976),

14, N. N. Bezrukov, "NEA'TPL — a tool for simplifying PL/1 program debugging," Programmirovanie,
No. 5, 87 (1978),

16. - N. N, Bezrukov, "Generatlon of a program for printing the documenl header [rom the degeription of the

 header structure," Programmirovanie, No. 6, 92 (1979),
16, N. N. Bezrukov, "A modification of the Floyd—Evans language," Programmirovanie, No. 4, 53 (1979).

A TSR 0 e o S
T T TR T R

